4 research outputs found

    Spatial Modeling of Compact Polarimetric Synthetic Aperture Radar Imagery

    Get PDF
    The RADARSAT Constellation Mission (RCM) utilizes compact polarimetric (CP) mode to provide data with varying resolutions, supporting a wide range of applications including oil spill detection, sea ice mapping, and land cover analysis. However, the complexity and variability of CP data, influenced by factors such as weather conditions and satellite infrastructure, introduce signature ambiguity. This ambiguity poses challenges in accurate object classification, reducing discriminability and increasing uncertainty. To address these challenges, this thesis introduces tailored spatial models in CP SAR imagery through the utilization of machine learning techniques. Firstly, to enhance oil spill monitoring, a novel conditional random field (CRF) is introduced. The CRF model leverages the statistical properties of CP SAR data and exploits similarities in labels and features among neighboring pixels to effectively model spatial interactions. By mitigating the impact of speckle noise and accurately distinguishing oil spill candidates from oil-free water, the CRF model achieves successful results even in scenarios where the availability of labeled samples is limited. This highlights the capability of CRF in handling situations with a scarcity of training data. Secondly, to improve the accuracy of sea ice mapping, a region-based automated classification methodology is developed. This methodology incorporates learned features, spatial context, and statistical properties from various SAR modes, resulting in enhanced classification accuracy and improved algorithmic efficiency. Thirdly, the presence of a high degree of heterogeneity in target distribution presents an additional challenge in land cover mapping tasks, further compounded by signature ambiguity. To address this, a novel transformer model is proposed. The transformer model incorporates both fine- and coarse-grained spatial dependencies between pixels and leverages different levels of features to enhance the accuracy of land cover type detection. The proposed approaches have undergone extensive experimentation in various remote sensing tasks, validating their effectiveness. By introducing tailored spatial models and innovative algorithms, this thesis successfully addresses the inherent complexity and variability of CP data, thereby ensuring the accuracy and reliability of diverse applications in the field of remote sensing

    Oil Spill Candidate Detection Using a Conditional Random Field Model on Simulated Compact Polarimetric Imagery

    Get PDF
    This is an Accepted Manuscript of an article published by Taylor & Francis in Canadian Journal of Remote Sensing on 20 April 2022, available online: https://doi.org/10.1080/07038992.2022.2055534Although the compact polarimetric (CP) synthetic aperture radar (SAR) mode of the RADARSAT Constellation Mission (RCM) offers new opportunities for oil spill candidate detection, there has not been an efficient machine learning model explicitly designed to utilize this new CP SAR data for improved detection. This paper presents a conditional random field model based on the Wishart mixture model (CRF-WMM) to detect oil spill candidates in CP SAR imagery. First, a “Wishart mixture model” (WMM) is designed as the unary potential in the CRF-WMM to address the class-dependent information of oil spill candidates and oil-free water. Second, we introduce a new similarity measure based on CP statistics designed as a pairwise potential in the CRF-WMM model so that pixels with strong spatial connections have the same class label. Finally, we investigate three different optimization approaches to solve the resulting maximum a posterior (MAP) problem, namely iterated conditional modes (ICM), simulated annealing (SA), and graph cuts (GC). The results show that our proposed CRF-WMM model can delineate oil spill candidates better than the traditional CRF approaches and that the GC algorithm provides the best optimization.Natural Sciences and Engineering Research Council of Canada (NSERC),Grant RGPIN-2017-04869 || NSERC, Grant DGDND-2017-00078 || NSERC, Grant RGPAS2017-50794 || NSERC, Grant RGPIN-2019-06744

    Region-Based Sea Ice Mapping Using Compact Polarimetric Synthetic Aperture Radar Imagery with Learned Features and Contextual Information

    No full text
    Operational sea ice maps are usually generated manually using dual-polarization (DP) synthetic aperture radar (SAR) satellite imagery, but there is strong interest in automating this process. Recently launched satellites offer compact polarimetry (CP) imagery that provides more comprehensive polarimetric information compared to DP, which compels the use of CP for automated classification of SAR sea ice imagery. Existing sea ice scene classification algorithms using CP imagery rely on handcrafted features, while neural networks offer the potential of features that are more discriminating. We have developed a new and effective sea ice classification algorithm that leverages the nature of CP data. First, a residual-based convolutional neural network (ResCNN) is implemented to classify each pixel. In parallel, an unsupervised segmentation is performed to generate regions based on CP statistical properties. Regions are assigned a single class label by majority voting using the ResCNN output. For testing, quad-polarimetric (QP) SAR sea ice scenes from the RADARSAT Constellation Mission (RCM) are used, and QP, DP, CP, and reconstructed QP modes are compared for classification accuracy, while also comparing them to other classification approaches. Using CP achieves an overall accuracy of 96.86%, which is comparable to QP (97.16%), and higher than reconstructed QP and DP data by about 2% and 10%, respectively. The implemented algorithm using CP imagery provides an improved option for automated sea ice mapping

    Sea Ice Mapping from Compact Polarimetric SAR Imagery Using Contextual Information and Learned Features

    No full text
    The RADARSAT Constellation Mission (RCM) offers a compact polarimetric (CP) synthetic aperture RADAR (SAR) mode that provides a wider swath than quad-polarization (QP) and more polarization information in observations than dual-polarization (DP). We investigate the capability of CP SAR imagery in generating sea ice maps by taking advantages of learned features, statistical properties, and contextual information. We present a region-based sea ice mapping methodology. First, an existing unsupervised segmentation called iterative region growing with semantics based on statistical properties of CP SAR data (CP-IRGS) is used to generate edge-preserved and homogeneous regions to reduce destructive effects of speckle noise. Then, a residual-based convolutional neural network (ResCNN) is used to specify the type of ice in regions. The performance of the proposed classification methodology is compared to that of standard machine learning classifiers, support vector machine (SVM) and random forest (RF). To simulate CP SAR data, two QP RADARSAT-2 scenes are utilized.The obtained results indicate that the proposed region-based classification methodology achieves 96.66\% overall accuracy, which is approximately 4\% higher than those obtained by SVM and RF
    corecore